
ANALYSIS OF SCALABLE TOPIC MODELING IN LATENT
DIRICHLET ALLOCATION

by

Richie Frost

A Senior Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Computer Science

School of Computing
University of Utah

August 2017

Approved:

/
Feifei Li
Supervisor

/
H. James de St. Germain
Director of Undergraduate Studies
School of Computing

/
Ross Whitaker
Director
School of Computing

Abstract

In natural language processing and machine learning, one of the more inter-

esting problems to solve is determining the most relevant topics of documents

(and words within those documents) with reasonable accuracy and at scale.

Latent Dirichlet Allocation, also known as LDA, is one such algorithm that

attempts to assign the most statistically likely topics to words and docu-

ments. Systems have been made to handle LDA for a smaller corpus of

documents, but in an era when data quantity explodes at the scale of the

web, more e�cient methods must be used to model topics in a reasonable,

practical way, even when the dataset is massive. This paper analyzes ways

to scale LDA for di↵erent datasets, and examines a distributed architecture

for asynchronous, non-locking LDA at scale.

Contents

1 Introduction 4

2 Background 6

2.1 What is Topic Modeling? . 6

2.2 What is Latent Dirichlet Allocation? 8

2.3 Using LDA to generate documents 8

2.4 Why LDA? . 9

3 LDA Inference 13

3.1 Markov Chain Monte Carlo Sampling 16

3.1.1 Primer on Markov Chains 16

3.1.2 Primer on Monte Carlo methods 17

3.1.3 Markov Chain Monte Carlo methods - Putting it in

context . 18

4 Related Work 19

5 Challenges 22

5.0.1 Runtime complexity 22

1

5.0.2 Synchronizing globally shared C
w

(and C
k

) 22

5.0.3 Language of implementation 24

5.0.4 Memory consumption 24

5.0.5 Random memory access and cache misses 25

5.0.6 Network load . 25

5.0.7 Token passing - correct worker likelihood 26

5.0.8 Contribution 1: Nomadic Token Passing Map 27

6 Methods 28

6.1 Data Cleaning . 28

6.1.1 Lemmatization . 28

6.1.2 Part of Speech Tagging 29

6.1.3 Stop words . 30

6.1.4 Tf-Idf . 30

6.1.5 Miscellaneous Cleaning 31

6.2 Data Conversion . 31

6.2.1 Contribution 2: Data Structure for LDA Processing . 32

6.3 Markov Chain Monte Carlo Sampling 32

6.3.1 Collapsed Gibbs Sampling (CGS) 33

6.3.2 F+LDA . 34

6.3.3 Modified Fenwick (F+) Tree 35

6.3.4 Sampling with F+LDA 35

6.4 Distributed Architecture . 37

6.5 Load Balancing . 39

2

6.5.1 Contribution 3: Load balancing in a token passing

architecture . 39

7 Results 41

7.1 Data Cleaning . 41

7.1.1 The Process, a Lesson in Parallelization 41

7.2 Sampler Comparison . 45

7.2.1 F+LDA vs CGS . 45

7.3 Distributed Architecture results 49

7.3.1 Nomadic Token Passing 49

7.3.2 Token Passing Delay 50

7.3.3 Nomadic token passing - Excellent for memory con-

sumption in distributed systems 51

8 Future Work 52

8.1 Porting to a faster language 52

8.2 Online sampling . 52

8.3 Topic modeling as a service 53

8.4 Flexibility . 53

9 Conclusions 54

3

Chapter 1

Introduction

Data generated on the Internet and in business activity is a double-edged

sword: the vast amount of data is only growing faster and faster, and so sta-

tistical methods of machine learning can theoretically converge to making

more and more accurate predictions. However, data generated online, espe-

cially text data, is often the most prone to grammatical errors, misleading

statements (such as sarcasm), emoticons, and a whole host of other issues.

Therefore, even though the size of the data makes statistical machine learn-

ing seem more promising, there are still many challenges to be considered

when attempting to process data generated online.

The method to be used for the topic modeling is Latent Dirichlet Allo-

cation, or LDA. LDA uses a generative model for predicting the topics that

correspond to a document, as well as the tokens in that document (individ-

ual words). Many statistical machine learning models attempt to use labeled

instances of training data to teach models how to classify new information

correctly. With labeled training data, these machine learning classifiers are

4

able to do supervised machine learning, and easily measure metrics like re-

call, precision, and overall accuracy. However, since labeled textual data is

expensive and often small, with licensing issues creating even more obstacles,

many web-scale textual machine learning is often done through unsupervised

machine learning. LDA, as an unsupervised model, is an ideal algorithm for

unsupervised topic modeling in web-scale datasets.

LDA is a type of hierarchical bayesian inference. Since the posterior

distribution is not known, LDA has an inference step that approximates the

posterior distribution. As there are many methods for the inference step

of LDA, this paper aims to identify which methods perform best amongst

di↵erent datasets. The key performance indicators for each method are 1)

Log likelihood and 2) Elapsed time during the inference process. Log likeli-

hood is a method used in unsupervised machine learning that approximates

how closely a proposed distribution mirrors the ideal distribution, and the

elapsed time metric is used for examining the runtime complexities of each

method at di↵erent steps in the process. Every method to be examined in

this paper uses a variant of Markov Chain Monte Carlo sampling methods,

so I’ll be examining the performance of several individual samplers as well

as proposing some ways to improve them, with data to back up my results.

5

Chapter 2

Background

2.1 What is Topic Modeling?

In conversational language, topics are more familiarly known almost like

semantic roles, where a topic is identified by a single word, such as ”sports”

or ”cooking”. However, topics in the sense of topic modeling are identified

by a mixture words that are most likely to be found together in the wild, no

matter which document they are found in. Intuitively, topic modeling is akin

to the way grocery store aisles are organized. There are tens and hundreds

of thousands of products in the grocery store, and as the manager of the

store, you want to be able to group these products in such a way that they’ll

be easy to find, even if someone is coming from out of town and has never

been to the store before. An aisle in a grocery store is typically identified

by a number, and then related to that number are a few recognizable words

that relate to products you’ll find in that aisle - for example, aisle 2 may

contain cookies, crackers, and chips. You likely won’t find ice cream in

6

aisle 2, but aisle 6 may have a sign with words like ice cream, popsicles,

whipped cream, and frozen berries. Thus, the manager of the store can

group together similar products in batches, and most grocery stores will

have similar groupings.

In topic modeling, documents are like grocery stores, words are like prod-

ucts, and topics are like aisles. We want to be able to distinguish which prod-

ucts should be grouped together, and each grocery store will have di↵erent

numbers of aisles. Topic modeling often assumes a generative probabilistic

model, which tries to model the kind of likelihood of grouping certain words

together as well as the likelihood that each document will have such group-

ings. More formally, individual documents are represented as a probability

distribution over topics, and topics are represented as a probability distri-

bution over words. Since the actual probability distribution for documents,

✓ and the actual probability distribution for topics, � are unknown at the

beginning (when all we have is raw data), recent work has attempted to

approximate the actual ✓ and � distributions that would have generated the

raw data. When these algorithms converge from a random proposed distri-

bution to a close enough approximation of the actual distribution, we call

this the posterior distribution. Topic modeling algorithms attempt to per-

form this convergence algorithm as e�ciently and as accurately as possible,

and Latent Dirichlet Allocation (LDA) is the most popular of them all.

7

2.2 What is Latent Dirichlet Allocation?

Latent Dirichlet Allocation, or LDA, is a generative probabilistic model used

to explain how computers might interpret how documents are written by hu-

mans. But since LDA can work with any discrete, finite set of data, it’s not

just limited to words. So, this axiom can be expanded to include any dis-

crete set of elements, including documents in any language. The possibilities

include image analysis, machine learning features, sounds, and more. Since

the individual entries in the topic-document and topic-word matrices are

probability values (when using MCMC sampling to approximate the pos-

terior distribution), with the columns of such matrices representing topic

distributions and the rows representing individual discrete collections (in

our case, documents), all the user of LDA needs to do is provide some kind

of mapping from indices of the rows/columns to line up with the patterns

they’re trying to find when mapping LDA’s results back to a human-readable

representation. However, for our purposes, we’ll use the example of textual

documents, particularly documents written in English.

2.3 Using LDA to generate documents

First, we need to understand how LDA generates documents. Let’s say we

have D documents, V words, and K topics. Let L
d

be the number of words

in document d, and w be a word in V . Each document is generated word by

word, with each word being generated from a topic-word distribution, and

each topic is sampled from that document’s document-topic distribution.

Formally, the process is as follows:

8

1. Draw K topics �
k

⇠ Dirichlet(�)

2. For each document d 2 D:

• Draw the topic distribution for d, ✓
d

⇠ Dirichlet(↵)

• For each word w in document d, from 1 to L
d

:

– Draw the topic k to be used from the document’s topic dis-

tribution, ✓
d

– Draw the word w to be used from the topic k distribution �
k

2.4 Why LDA?

In natural language processing, a collection of documents is called a corpus.

To be a sure, a computer typically sees individual documents di↵erently than

humans do. While a human sees context, structure, literary meaning and

the subtleties of natural language, a computer (at least as of this writing) is

designed to only process numbers in binary form. Humans need to then pro-

gram computers to tell them what to do and create abstractions for di↵erent

kinds of logic and functionality, but even then, computers have limitations

in processing power, as well as the amount of information they’re able to ab-

sorb. The intuition humans have when reading a document is something we

take for granted; it’s much more time and resource intensive for a computer

to approach that same kind of intuition and o↵-the-cu↵ understanding of

natural language. To put it simply, in order to process text at the scale of

the web, computers need a way to distill the information found in documents

into what’s essential only, and in a format it can understand. For the pur-

9

poses of finding latent structure and relation amongst documents, LDA only

needs to know about discrete instances of data elements and the context of

co-occurring elements in the same document, as well as the context of similar

data elements in varying contexts in other documents in the corpus. LDA

doesn’t need to know about what the elements themselves actually mean,

just that the elements are indexed numerically in order to distinguish them.

When data is converted this way, computers have a definite advantage over

humans, at least in terms of the volume of document understanding.

For our purposes, and for many previous works using LDA for topic

modeling on textual corpuses [1, 2, 3, 12, 4], this data format is known as

a ’bag of words’ representation. In an introductory probability and statis-

tics course, one of the first analogies used to teach the idea of probability

sampling is the parable of picking marbles out of a bag. Obviously, the

marbles in the bag get jumbled around and there’s not really any way of

telling in which order the marbles will be sitting when one reaches into the

bag. The probability question, in this nascent example, is typically some-

thing like ”What is the probability of picking a red marble, if we know there

are 2 red marbles, 3 green, and 4 blue?” Order doesn’t matter, and the

ratio of possible marbles chosen to the total number of marbles in the bag

stays the same regardless of order. For LDA to be e�cient, the elements

of a data set are converted to a similar ’bag’ of elements, where order is

irrelevant and the ’marbles’ are the numerical indices representing instances

of unique words in the document. For textual documents like Wikipedia

articles, for example, the ’bag’ is analogous to an individual article (about

Sea World, for example), and every time the word ’dolphin’ shows up in the

10

article is analogous to the proverbial red marble in our previous example.

In a corpus of documents, we’re essentially looking to convert our original

collection of documents into a collection of bags of words. Since frequencies

are relative to individual documents as well as to the corpus as a whole, we

can start to intuitively see how this bag of words representation translates

into individual probability values that our computers can understand. To

bridge the gap between the probabilistic values that a computer sees and

the plain text representation that humans intuitively understand, the bag

of words representation requires a dictionary, where each word is assigned

the numerical ID used in LDA that can be used as a reference later and to

convert future documents into a bag of words format. This dictionary is

created at the same time as the bag of words conversion for each document,

and is typically stored as a Hashmap data structure for quick lookup (O(1)

time).

Whether using LDA or not, the goal of the topic modeling task is to

produce a probabilistic model that can make it easier to group documents

together, rather than produce single semantic-level words that can define a

group of documents. This model is then used to infer the topic distribution,

(or grouping, to put it colloquially) of new, previously unseen documents.

Topic modeling makes it straightforward to make accurate recommendations

in social networks, products on Amazon, and books to read based on books

you’ve already read, among many other applications.

A topic, strictly defined, is a probabilistic mixture of words. Topic prob-

abilities are assigned to documents as well as to individual words, and the

power of LDA is its ability to infer similar words in many di↵erent contexts.

11

Each topic contains a probability mixture of every word in the vocabulary,

with more likely words tending to cluster around individual topics with re-

lated words.

12

13

Chapter 3

LDA Inference

Term Definition

↵ Hyperparameter to ensure ✓ sparsity

� Hyperparameter to ensure � sparsity

DW Document-Word frequency matrix

V Size of vocabulary

K Number of topics

D Number of documents

� KxV Topic-word probability matrix

�
k

Word probability distribution for topic k

✓ DxK Document-topic probability matrix

✓
d

Topic probability distribution for document d

C
w

Word-topic count matrix

C
d

Document-topic count matrix

C
k

Topic total count array

Z Topic assignment matrix

W Word instances matrix

C
wk

Topic count for word w and topic k

C
dk

Topic count for document d and topic k

14

Since we don’t know the actual posterior distribution of � and ✓ from the

beginning, we need to infer an approximation of the posterior distribution

using the data we are given. This paper examines one of two major inference

methods, Markov Chain Monte Carlo sampling, and several algorithms for

performing MCMC. In LDA, we are given hyper-parameters ↵ and �, along

with our data. ↵ is used to ensure that the bulk of the topic distribution

for a document centers around only a small subset of topics, and � has

the same e↵ect on word distribution in a topic. This is known as sparsity.

This sparsity is what sets LDA apart from Probabilistic Latent Semantic

Analysis, or pLSA [13].

The bird’s eye view of LDA inference goes like this (when using MCMC

sampling):

1. For each word in the corpus, assign it a random topic.

2. For N number of iterations:

• For each word in the corpus, try to assign it a better topic than

the previously assigned topic (using a sampling technique).

After some number of iterations, typically less than N for su�ciently

large N , the topic assignments become relatively stable, and don’t change

very much. This is because, although topic assignments are random at first,

the power of co-occurrence of words in a document and in similar contexts

across the corpus guides better and better topic assignments throughout the

inference process. Typically, when measuring the progress of LDA inference,

log likelihood is measured after each of N iterations to see how relatively sta-

15

ble the topic assignments are, and therefore how close the current proposed

distribution aligns with the most likely correct posterior distribution.

3.1 Markov Chain Monte Carlo Sampling

When you have an unknown probability distribution that you’re trying to

find, denoted as p, it’s important to either a) have a simple, reasonable way

to sample from p, or b) have a simple, reasonable way to sample from a

proportional distribution to p and compare it to p. Markov Chain Monte

Carlo sampling is a method for simulating distribution sampling from p

when sampling from actual p is intractable or impossible.

3.1.1 Primer on Markov Chains

A Markov Chain is a stochastic model in probability and artificial intelli-

gence that is used to describe a sequence of possible events in a state space

by starting with a strong dependence assumption and a random state, and

progressively walking events in the state space by considering the following

statement to be true:

p(s
t

|s
t�1, st�2, ..., st�n

) ⌘ p(s
t

|s
t�1) (3.1)

That is to say, Markov Chains choose the next state in a transition by only

considering the probability of the most recent state in the chain, rather

than considering the entire history of state transition probabilities. This is

useful for LDA inference sampling because it doesn’t require the algorithm

16

to maintain a history of the topic assignments that change throughout the

inference process, only the most recent topic assignment. This greatly sim-

plifies the sampling process for LDA inference.

3.1.2 Primer on Monte Carlo methods

Monte Carlo methods approximate E[X] for some random variable X by

taking the average of a number of samples from a proposal distribution.

The equation is as follows:

1

N

NX

i

q(X) (3.2)

where N is the number of monte carlo simulations, q is the proposal proba-

bility distribution from which to sample, and X is the random variable we’re

sampling with. The intuition is that as N ! 1, 1
N

P
N

i

q(X) ⇡ E[X]. More

Monte Carlo simulations can lead to a closer approximation of the actual

expected value of X, but we also need to keep in mind that in LDA infer-

ence, there is an inherent dependency between words in similar contexts, so

we can’t just use Monte Carlo to approximate all topic assignments, since

the dependency relation makes takes away any independence assumptions

across topic assignments in the corpus.

17

3.1.3 Markov Chain Monte Carlo methods - Putting it in

context

In LDA inference, Markov Chains are used to determine the most likely cor-

rect topic assignments, and use Monte Carlo methods to approximate the

best topic assignments over the inference process. If only Markov Chains

were used, convergence would be less likely, so Monte Carlo methods are

applied as well so that state transitions (i.e. new topic assignments) help

the entire system converge to an approximately correct posterior distribu-

tion. Rather than just looking for locally optimal topic assignment choices

at each iteration, we want our topic assignments at one iteration to pro-

vide meaningful context for topic assignments at the next iteration (and for

subsequent words), hence the Markov Chain dependence assumption.

18

Chapter 4

Related Work

In an e↵ort to streamline system performance, previous e↵orts have focused

on the sampling technique used for LDA, even combining two di↵erent tech-

niques as a hybrid sampling technique in order to take advantage of each

technique’s individual strengths in particular settings. LDA*, for example,

uses a combination of two di↵erent sampling techniques to account for one

technique’s superior runtime e�ciency on a dataset given a higher number

of topics, and a separate sampling technique for better runtime e�ciency on

datasets with longer document length [1].

Most previous e↵orts have made an e↵ort to pre-process the data, by

removing stop-words - words that are overly frequent and not helpful in

determining topics (words like ’the’, ’and’, ’if’, etc.), and then sending the

data to be processed and classified [2]. The idea here is that the stop-

words skew the probability distribution unfairly amongst words that provide

little meaning other than context, so removing them creates more clarity

(sparsity) for topic-word distribution. Since LDA uses a bag of words model,

19

context is irrelevant, so removing stop-words before LDA sampling is ok here.

Systems have been built to handle large-scale LDA processing, using an

asymmetric server/worker model with shared data between machines. These

have focused on minimizing the cost of sending data between machines by

compressing data, removing irrelevant tokens (i.e. overly frequent words),

and representing data in clever data structures before sending bits over the

wire. In addition, they have had to deal with the challenge of varying docu-

ment sizes, as partitioning documents e�ciently is largely dependent on the

size of the individual documents being processed, not the number of docu-

ments in each partition. Load balancing must take place when distributing

documents to workers. Since worker load is typically dominated by docu-

ment length, a master dispatcher must keep track of the number of words

that each worker will be processing, and distribute the next document to

the worker with the least number of total words to process in its partition

of the corpus.

Although many sampling algorithms for LDA run in O(1) time, work

has been done to show that there are still improvements to be made when

sampling. Chen, Li, Zhu and Chen developed WarpLDA, a cache-e�cient

algorithm for Latent Dirichlet Allocation [3]. They found that when other

systems created caches to speed up their system, there was still a slight lag

in processing. Their hypothesis was that the system slowed down due to

cache misses, so their e↵orts exploited the speed of the L3 cache, achieving

running times 5-15x faster than state of the art LDA systems, as of 2016 [3].

The interesting thing about these results is that WarpLDA outperformed

two di↵erent world-class sampling methods - both a Metropolis-Hastings

20

based method and a sparsity aware method, and did so at scale. WarpLDA

harnesses cache locality at the document level.

David Blei, the original author of the Latent Dirichlet Allocation paper

[12], originally proposed variational inference as a means to approximate the

posterior distribution. This is a method that foregoes sampling methods en-

tirely, and focuses on bayesian inference and expectation maximization to

get results. It scales easily with multiple workers due to the fact that shar-

ing global state is more of a non-issue (individual partitions yield localized

statistics that are combined with other workers). The E (expectation) step

is the most expensive step in variational inference, and is typically passed

o↵ to workers before the workers return the results, where the M (max-

imization) step acts as a reducer for the global state. However, there are

some drawbacks with variational inference that caused me to not go forward

with this approach. The total memory consumption for the LDA system is

proportional to O(W), where W is the number of workers. This means

that the amount of memory required when using multiple workers increases

with every worker, since every worker has to use its own copy of the same

memory to perform the E step. Adding more workers increases speed for

sure, and variational inference is typically faster than Markov Chain Monte

Carlo sampling methods like Gibbs [9] and F+LDA [4], but the memory

complexity makes scaling past a certain point prohibitive. Still, for some

languages (such as Python) that lack the speed needed for e�ciently dis-

tributing MCMC sampling over a cluster of machines, variational inference

is a fine choice, as is evident in Python’s most popular distributed LDA

module, Gensim [10].

21

Chapter 5

Challenges

5.0.1 Runtime complexity

By itself, without any optimizations, LDA inference by MCMC sampling is

very computationally expensive. In a corpus, each word instance must iter-

ate through all possible topic assignment probabilities, and there are many

words and documents in even a modestly-sized corpus. This constitutes only

a single iteration of the corpus, and reasonable e↵orts for LDA inference of-

ten include hundreds or thousands of iterations [4, 3, 1]. For this reason,

runtime complexity is a challenge.

5.0.2 Synchronizing globally shared C
w

(and C
k

)

With a large corpus, LDA inference running on a single process quickly

becomes intractable. For this reason, much research has been done in the

way of distributed LDA inference [4, 3, 1, 5, 7, 10]. However, the problem

22

isn’t solved with a simple map-reduce operation, because each worker thread

needs to share some global state - namely, the C
w

matrix. It’s possible to

do LDA inference with independent C
w

matrices for each worker, but when

combining workers, there’s no guarantee that the word-topic rows will line

up, even if the distributions are the same. For example, in worker 1, topic

1 could have the distribution heavily favored towards words 4, 5, and 6. In

worker 2, topic 3 could have the distribution heavily favored towards words

4, 5 and 6. Clearly, topic 1 in worker 1 is the same distribution that worker 2

is trying to get in topic 3, but when combining the C
w

matrices from workers

1 and 2, the topics get jumbled up, and the distributions su↵er from drift

almost from the first iteration. So, it’s clear that topic 1 in worker 1 needs to

match topic 1 in worker 2, and so on. Although C
d

matrices are independent

of each other and can be stored independently per worker [4], the probability

distributions from C
w

are highly dependent and must therefore remain as

one.

For this reason, one of the biggest challenges in distributed LDA is in

synchronizing global state in such a way that performance isn’t hindered

and C
w

remains up to date at each worker. Many synchronization methods

have been used to maintain C
w

with each worker. Yahoo! LDA uses a sym-

metric parameter server architecture, where the parameter server stores a

single copy of C
w

and locks on updates from every worker [6]. LDA* uses

an asymmetric parameter server with C
w

partitioned across several servers

to create separate synchronization units [1], with sampling of less frequent

words done on the parameter servers as well in order to reduce network

communication cost. F+NOMAD uses a nomadic token passing scheme,

23

where each token consists of a 2-tuple of (token index, C
w

row). Each row

corresponds to the token index except for token 0, which is designated as

the C
k

token (topic assignment totals) [4]. All of these methods produce

varying results of implementation di�culty and overall performance, syn-

chronizing global state just as e↵ectively as the next. I had the most success

implementing the F+NOMAD architecture, and theoretically had the most

potential for parallelization. However, this leads me to the next challenge.

5.0.3 Language of implementation

There seems to be a tradeo↵ between time to implement and time to run - the

programming languages that are quickest to implement are usually slowest

to run, and the programming languages that are slowest to implement are

usually the fastest to run. Debugging a distributed system can be tricky

at best, so choosing a language that proves fairly easy to debug sometimes

can take the place of choosing a faster language, which sacrifices system

performance to some degree.

5.0.4 Memory consumption

When using a smaller corpus that fits entirely into memory, (in the order

of megabytes), there isn’t much need to worry about planning to scale with

memory consumption. However, most companies will need to use a dataset

with millions and even billions of documents, with hundreds of thousands of

topics [3, 4, 5, 7, 1]. At this point, the designer of the system architecture

needs to take several tradeo↵s into account, such as load balancing amongst

workers in a distributed system (running large corpuses in serial mode is

24

highly intractable), how large of a chunk of the corpus should each worker

have, should the architecture be able to process in batches, should the ar-

chitecture be able to handle batches? Should the system be able to handle

streaming LDA inference? Most MCMC inference methods haven’t done

much to handle streaming LDA inference, but Y. Gao, et al presented an

algorithm for streaming gibbs sampling that uses a decay factor to dampen

the e↵ect of each batch in online sampling [8].

5.0.5 Random memory access and cache misses

In any system with a large amount of data to be stored in memory, there

are bound to be random memory accesses and cache misses. However, when

the system scales, cache misses become more frequent with more random

memory accesses, and this can slow down even an O(1) sampler by a factor

of 5-15x [3]. The challenge is to structure the sampler in such a way that

memory is read more sequentially, which is no trivial task with a large C
w

matrix.

5.0.6 Network load

If the rest of the distributed system is highly performant, and each individual

component is running at top speed, network load can be a bottleneck. Since

each individual worker needs to synchronize with the global copy of C
w

, there

is often quite a large amount of data being sent over the wire in aggregate.

Each individual network call can range anywhere from a subset of a single

row of C
w

to all of C
w

, and especially when updates are passed at each

individual word update, such as in F+NOMAD [4], network load becomes

25

a high priority to optimize.

5.0.7 Token passing - correct worker likelihood

Specifically with the nomadic token passing scheme used in F+NOMAD

and for my distributed architecture (see 6.4), I found that the likelihood of

each worker receiving the token it needed became less and less when adding

more workers when implementing the original F+NOMAD paper. Their

architecture decides which worker to pass the token to next by uniformly

sampling from [1,W], whereW is the total number of workers. However, this

led to 55% wasted network communication on a modestly sized, fairly dense

corpus with only 4 workers, since 55% of the time tokens were being passed

to a sampler that did not contain the corresponding word in its chunk of the

corpus. The results got even worse, with a linear increase in the number of

”misses” when adding more workers. The need each worker has for a token is

defined by the unique words the worker processes in its chunk of the overall

corpus. When more workers are added, each individual independent chunk

of the corpus becomes more sparse relative to the corpus, which causes even

more worker misses. I model the approximate probability of a token being

passed correctly to a worker w
correct

with the following equation:

p(w
correct

|t) =
1
W

P
W

w=1 uw

T
(5.1)

where p(w
correct

|t) means the worker w selected can process the token t,

1
W

P
W

w=1 uw is the average number of unique words per worker (with u
w

being the number of unique words at worker w), and T is the total number

26

of tokens to be passed in the system. As the number of workers in the

system increases, 1
W

P
W

w=1 uw decreases, thereby decreasing the probability

of a worker getting a token the corresponds to one of the unique words it’s

sampling. To solve this problem, I present my first contribution:

5.0.8 Contribution 1: Nomadic Token Passing Map

In my distributed system, I implemented a dispatcher that keeps track of

global state by creating a map of sets, where each token is a key and the

value is a set containing all of the workers that can process that token. This

is used to route token passing only to workers that are able to process that

token, thereby eliminating all worker misses and decreasing network load by

55%. Each worker keeps track of the number of iterations left to process that

token, and when that number reaches 0 for worker w, w is removed from the

set at the dispatcher for token t. Once w is removed from the queue for token

t, w0 is unable to pass t to w. Once the queue is empty for t, t is passed back

to the dispatcher, who marks that token’s processing as complete, thereby

halting all token passing for t and decreasing the overall bandwidth needed

for all remaining t 2 T . Future work would be to decentralize this process,

passing the queue of workers that may process this token as part of an

extended version of the token structure, as a 3-tuple.

27

Chapter 6

Methods

6.1 Data Cleaning

To begin with, the data must be cleaned to produce any kind of reasonable

results. As the saying goes, garbage in, garbage out. There are several

steps to take to tailor data for e↵ective LDA inference, and I’ll outline the

methods I used in the following sections.

6.1.1 Lemmatization

In natural language, words can take several di↵erent forms. They can be plu-

ral or singular, titlecase or lowercase, feminine or masculine, etc. Although

these words have di↵erent derivations, their base form means the same thing

[14]. For example, ’democratic’, ’democrat’ and ’democratization’ all have

the same base form ’democracy’. There are two ways of shortening words

to get them to their base form - stemming and lemmatization. Stemming is

more of a crude, quick way to chop o↵ the ends of words to get them to look

28

more like their base, but isn’t always correct. It’s usually meant for mas-

sive data, where the amount of computation necessary prohibits any kind of

morphological analysis or vocabulary use. Stemming is great for streaming

algorithms when there is already a lot of data to counteract mis-transformed

words, but even then, can produce semantic drift.

Lemmatization, on the other hand, is the right way to do things. Instead

of using naive heuristics to chop the ends o↵ of words, it uses morphological

analysis to determine where the words need to be cut o↵, and uses context

to determine if a word is being used as a noun or a verb, for example, and

thus has a better foothold on making better decisions about how to find

the base of the word. In LDA, there are already many words to consider in

a corpus. But the most important thing we want to consider is what the

words actually mean, and by lemmatizing words, we pare down the words

to their essence. This enables us to not only considerably shorten the actual

corpus for computation, but it also gives LDA inference clearer boundaries

when assigning topics to words.

6.1.2 Part of Speech Tagging

For simplicity, and for our purposes, we are typically only interested in nouns

and proper nouns when looking for topics. Verbs may sometimes come in

handy, when the verb may be less common, but as a whole, nouns work bet-

ter for LDA. This is because named entities, subjects, and direct/indirect

objects are the most common identifiers when delineating topics. Prelimi-

nary Tf-Idf analysis shows that the most important words in the corpus are

almost always nouns, so I chose to only use nouns in my datasets. For the

29

entire Wikipedia dataset, for example, choosing lemmatized nouns only for

the corpus reduced the size of the dataset from 18 GB to 5.8 GB.

6.1.3 Stop words

Stop words are words that occur overly frequently in a corpus, and are

therefore not useful. These include words like ’the’, ’and’, ’for’, and ’they’.

They don’t provide any value for topic modeling, so they are automatically

removed from the results in our corpus. These words may be part of some

noun phrases in rare situations (”The Who” is a common example), but we

are looking at more general patterns when topic modeling, and looking for

more frequent words anyway, so removing stop words doesn’t hurt the final

result.

6.1.4 Tf-Idf

One technique that’s very common when cleaning data is to use Tf-Idf values

to target the most relevant words. Tf-Idf stands for term-frequency inverse

document frequency, and is used to filter out which words are most repre-

sentative of a document. The formula for computing a single word’s Tf-Idf

score is as follows.

Let f
t,d

= frequency of term t in document d, N = |D|, and D = the docu-

ments in the corpus.

tfidf(t, d,D) = tf(t, d) ⇤ idf(t,D) (6.1)

30

tf(t, d) = f
t,d

(6.2)

idf(t,D) = log
N

|d 2 D : t 2 d| (6.3)

Inverse document frequency reflects how common a word is across the

corpus, and term frequency is how common that word is in a single document

d. The intuition is that words that are more important to a single document

will have a higher Tf-Idf score, because they will be less frequent in the

corpus but more frequent in that document. This heuristic works well for

most applications, but we also want to make sure we only use lemmatized

nouns as well with a minimum frequency so that we don’t end up with

characters like emoji and urls that don’t really provide any meaning to the

document but still might have high Tf-Idf scores.

6.1.5 Miscellaneous Cleaning

I also made sure to remove all non-ASCII characters, since they didn’t pro-

vide any contextual clues in plain English text. URLs were also removed,

as were numbers. To make the data more consistent and predictable, I also

made sure to put every word in lowercase.

6.2 Data Conversion

Even with all the e↵ort of paring down documents to their essence, doc-

uments still need to be converted into a format that’s suitable for LDA

31

inference. Each word is converted to a number, and a DxV matrix is cre-

ated to store the counts of words that occur in each document, where D

is the number of documents and V is the number of unique words. This

matrix will be called DW

6.2.1 Contribution 2: Data Structure for LDA Processing

In order to make the corpus more compact, and reduce the number of ran-

dom memory accesses, I used a set of 3 arrays to store the word, document,

and topic assignment indices where the value at that index is nonzero, based

on the optimizations in [11]. With this setup, there’s no need to run several

for loops, and greatly reduces the computation space - especially for highly

sparse datasets. Also, every iteration in the loop is guaranteed to process

only nonzero entries in each document (in other words, unique words from

the vocabulary that have at least one instance in the document). This is be-

cause, when the arrays are created, they are done so by finding the row and

column indices of nonzero entries in the DW matrix. This not only reduces

the runtime complexity, but also the memory complexity, and ensures more

sequential memory accesses. These optimizations ensure a significant speed

boost in each MCMC sampling iteration.

6.3 Markov Chain Monte Carlo Sampling

Only Markov Chain Monte Carlo samplers were used for analyzing LDA

inference in this paper. In particular, Collapsed Gibbs Sampling (CGS) and

F+LDA samplers were used. A summary of how each sampler works is now

32

presented.

6.3.1 Collapsed Gibbs Sampling (CGS)

Collapsed Gibbs Sampling is a very common sampling method for LDA

inference with MCMC methods, due to its simplicity and high availability

[4]. The general algorithm is as follows:

1. Given word w in document d, decrease C
wk

, C
dk

and C
k

by one.

2. Resample the topic assignment for word w in document d with the

equation

P (Z
dw

|W
dw

,↵,�) / (C
dk

+ ↵)(C
wk

+ �)

C
k

+ � ⇤ V (6.4)

3. Increase C
wk

, C
dk

and C
k

by one.

The first step in the resampling process is to build a cumulative proba-

bility distribution

8k 2 K : p(k) =
k�1X

i

(C
dk

+ ↵)(C
wk

+ �)

C
k

+ � ⇤ V (6.5)

where p(k) is the value at each entry, stored in a K sized array denoted as

cumsum. Then, take a uniform sample u ⇠ uniform([0, cumsum(argmax(k))]),

where argmax(k) is the last entry in the cumulative probability distribu-

tion array, denoting the unnormalized cumulative probability 8k 2 K for

equation 6.4.

With u, perform a binary search on cumsum to find the index at which

u would be inserted to maintain sorted order in the array, i.e. the index

33

before the first entry i where cumsum[i] >= u. The index returned from

this binary search is the new topic assignment for the word at position w in

document d.

6.3.2 F+LDA

F+LDA sampling is an optimized version of Collapsed Gibbs Sampling that

takes advantage of the fact that the approximate posterior distribution can

be factored from equation 6.4 into two parts:

p =
(C

dk

+ ↵) ⇤ (C
wk

+ �)

C
k

+ � ⇤ V (6.6)

= �(
C
dk

+ ↵

C
k

+ � ⇤ V) + C
wk

(
C
dk

+ ↵

C
k

+ � ⇤ V) (6.7)

Notice that this factorization conveniently puts the probability distribution

from which to sample into two parts that can be computed independently,

then added later for sampling:

�(
C
dk

+ ↵

C
k

+ � ⇤ V) (6.8)

C
wk

(
C
dk

+ ↵

C
k

+ � ⇤ V) (6.9)

F+LDA exploits this fact by optimizing for equation 6.8, since the com-

putation only requires C
dk

, and is completely independent of computations

involving C
wk

. C
dk

is always dense, but its portion of the probability distri-

bution can still be optimized by knowing that, when sampling document by

document, the data structure used to store the document-topic portion of

34

the probability distribution only needs to be updated twice for each word -

once when decrementing the current topic counts, and once when increment-

ing the current topic counts. F+LDA uses a modified Fenwick Tree to get

sampling and maintenance of the document-topic portion of the probability

distribution down to O(logK). [4]

6.3.3 Modified Fenwick (F+) Tree

The Modified Fenwick Tree, or F+ Tree [4], is a tree that is stored as an

array of length 2K, where K is the number of topics. Each entry k 2 K is

the probability �(Cdk+↵

Ck+�⇤V), for the document d and with a vocabulary size

V . Each of the last K entries in the array are the leaves of the tree and the

actual probabilities for k 2 K, and the first K entries in the array comprise

the ancestors of the leaves, where each parent node’s value is the sum of

all of its descendants. The root of the tree contains the total cumulative

probability for 8k 2 K.

6.3.4 Sampling with F+LDA

When using F+LDA, there is a 2-level sampling paradigm. As mentioned

in the previous section, the document-topic portion of the sampling process

is stored in an F+ Tree. Since the probability for each C
wk

needs to be

computed for every topic k 2 K, an array structure is built and rebuilt

with every word instance sampled in the corpus. The array is of size K,

where each entry in the array is the unnormalized cumulative probability

35

p(k) =
P

k�1
i=1 p(i). In other words, each entry in the array is only the

cumulative probability of k 2 K up until the kth entry in the array. For

simplicity, let q be the document-topic portion of the cumulative distribution

8k 2 K at word DW
dw

, and r be the word-topic portion of said distribution.

When this array is populated, a uniform sample is then drawn

u ⇠ uniform(max(q) +max(r)) (6.10)

where max(q) is the last entry in q and max(r) is the last entry in r. Then,

if u < max(q), sample from q using the modified Fenwick Tree. Otherwise,

sample from r, using the K-dim array and a binary search. Then with the

new topic z
new

as the result of that sample, assign z
new

for word w at DW
dw

and increment C
wznew , Cdznew and C

znew .

As a summary, here’s the general algorithm for F+LDA sampling (for

one word w 2 DW
dw

:

1. Decrement C
wk

, C
dk

and C
k

2. Build q, 8k 2 K : Equation 6.8

3. Build r, 8k 2 K : Equation 6.9

4. Sample u ⇠ uniform(max(q) +max(r))

• If u  max(q), sample ⇠ q

• Otherwise, sample ⇠ r

• z
new

is the sample returned

36

5. Assign z
new

to Z
dw

6. Increment C
wznew , Cdznew , Cznew

6.4 Distributed Architecture

The architecture I chose to use was based o↵ of the F+NOMAD [4] architec-

ture. This decision was driven by the need to address some of the challenges

in section 5, such as memory complexity per worker and synchronizing C
w

.

The F+NOMAD approach was taken originally from a matrix completion

algorithm [18], and generalized for synchronizing multiple variables C
w

and

C
z

. Token passing also has its roots in network architecture [17].

In the F+NOMAD token passing architecture, tokens are 2-tuples that

consist of an (index, C
w

row) pair. The token index is w + 1 for some

indexed w 2 V , and the C
w

row corresponds to word w. In order to syn-

chronize C
k

as well, a special token with index 0 is passed, with the row

containing the latest version of C
k

. In lay terms, a token is essentially the

permission a worker needs to process sampling for word w. Possession of a

token indicates permission for a worker to sample the word corresponding

to that token. This paradigm is known as ”worker computes” [4]. With no

locking necessary, and with the token passing done asynchronously amongst

workers, there is a very high potential for parallelization.

Each worker has a job queue, where incoming tokens are pushed onto

the queue and then popped for sampling. When the row contained in the

token has been sampled, updates are stored in the token, and the token is

then passed to the next worker who can receive it. The decision of which

37

worker receives the token next comes from Contribution 1, a map of sets,

where each entry in the dictionary points to a set of workers that can process

that token. When a worker receives the token with index 0, it computes its

updates to C
k

and then passes it along to the next worker. This is also done

with the dictionary of sets, and every worker is contained in the set until

it has processed the token N number of times, where N is the number of

iterations to process the entire corpus.

Because each document in the corpus is independent of all other doc-

uments in the corpus, each worker can have as little as 1 document in its

chunk and still produce an accurate topic model for its chunk. This is

largely because of the token passing architecture, knowing that every time

the worker needs to compute topic assignment updates for the documents in

its chunk, it only needs to receive a valid token. This is highly scalable be-

cause the memory consumption is low for each worker in terms of C
w

, and as

more workers are added, memory consumption per worker only decreases in

terms of C
d

. The token mapping paradigm outlined in contribution 1 also

ensures that no network bandwidth is wasted when sharing C
w

amongst

the workers when more workers are added, since each token pass is guaran-

teed to reach a worker that can process that token. Each of these workers

can sample in parallel with the tokens that they possess, and as tokens are

passed asynchronously on separate threads, the potential for parallelization

is unrivaled.

This architecture solves problems from section 5 by decreasing memory

consumption for each worker by distributing a single copy of C
w

and C
k

amongst all workers with |w| + 1 shards as tokens, removing the need for

38

locking to decrease runtime complexity and removing potential for dead-

locks, making for easy system implementation, synchronizing C
w

and C
k

,

and reducing the number of random memory accesses by only sampling from

one row of C
w

at a time. The only potential remaining challenge pertains

to network load, which will be covered in section 7.

6.5 Load Balancing

6.5.1 Contribution 3: Load balancing in a token passing ar-

chitecture

In addition to the highly scalable, asynchronous and non-locking architec-

ture described in section 6.4, each worker needs to have a balanced workload

in order to optimize overall system performance. Since infrequent words were

already removed in section 6.1, we don’t need to worry about the same kind

of skew-aware partitioning that was done in LDA* [1]. Furthermore, since

the parameter C
w

is decentralized, there is no need for any parameter servers

to sample infrequent words [1]. This greatly simplifies the complexity of the

system in terms of developer responsibility.

Let L denote the length of a document, where L
d

is the number of words

in document d. Research has shown that LDA inference performance is

dominated by max(L
d

)8d 2 D. For this reason, documents are distributed

amongst workers based on L
d

, trying to get the average number of words

per worker as equal as possible. The dispatcher in charge of distributing

documents maintains an array of word totals per worker. Documents are

processed one-by-one at system initialization, with the dispatcher assigning

39

subsequent documents to the worker with the lowest total number of words

to be processed across each of its documents.

40

Chapter 7

Results

7.1 Data Cleaning

7.1.1 The Process, a Lesson in Parallelization

Starting out, the goal was to use tweets as the main data source for train-

ing LDA. However, it soon became apparent that the dataset, even with

significant cleaning, was both overly sparse and overly messy. Words that

weren’t even words were showing up (emoji, for example, was notoriously

hard to clean up), and the time it took for the data cleaning program to run

was painfully slow for the amount of data retrieved. Tweets were cleaned

by removing all urls, email addresses, handles, and emoji, and then using

spaCy [15] to ensure that only lemmatized nouns and proper nouns were

left.

However, this left each individual tweet only 3.5 words long on average,

which isn’t nearly long enough to gather any meaningful representation of

41

Figure 7.1: Speedup of the data cleaning process on the Wikipedia Dataset,
using multiple workers

a vocabulary, and makes the matrices in LDA overly sparse. My initial

solution was to cluster the documents based on geolocation, and that created

document sizes that were significant enough for LDA. However, after running

some trial runs with LDA, the models being generated produced less than

desirable results in terms of their accuracy in processing new documents.

At this point, I decided that my LDA model needed to be trained using

a more mature dataset. Wikipedia has publicly available data dumps of all

of its articles, and various open-source software projects to extract the text

from the data. So, I decided to use this dataset instead, seeing that words

were generally spelled correctly (the open source community is constantly

checking each other’s grammar), and that the subjects were very broad

- making it a great candidate for forming an all-purpose vocabulary that

could be used to train LDA more intelligently. Not only that, articles in

Wikipedia are conveniently typically about only one topic, with maybe a

few mentions of subtopics within an article. This makes it so LDA can learn

42

discrete topics without having to worry about so much semantic drift.

From here, I started using Python’s Gensim module [10] to extract

the wikipedia data into sparse TfIdf (term-frequency inverse-document fre-

quency) vectors, but soon found that there were a few problems with the

dataset:

1. Words were not lemmatized, so the vocabulary was overstu↵ed with

variations on the same word. The data extraction program also had

a cap on the vocabulary size, so some words were left out in favor of

these word variations.

2. The words returned were often still messy. For example, one of the

main topics generated in LDA had one of its most salient words contain

byte content, completely unusable by humans. I later found out that

these byte-content tokens are metadata in Wikipedia, and therefore

even less useful on training a topic model.

3. Most of the words in the dataset were non-nouns. The most com-

mon words were actually often pronouns, which are very irrelevant for

topic modeling. After running LDA on this pronoun-heavy vocabu-

lary, some of the main topics’ most salient words were ”you” and ”he”,

for example. Garbage in, garbage out.

In order to clean the data more thoroughly, I decided I needed finer

grained control over how the data was being processed, even if it took more

time. I knew that just extracting nouns and proper nouns from documents

would take days at least, let alone removing email addresses, urls, etc. I

43

used Python’s textacy [16] module to clean the data in this way, combined

with spaCy to extract nouns and proper nouns. My data cleaning program

could only clean about 175 documents per minute, so after running the data

cleaning program for a whole night, I only had just over 122,000 documents

cleaned.

With a large dataset, unless you have the resources to put a lot of com-

putational power towards the problem, you need to parallelize your data

cleaning process in order to make it e�cient. I realized my previous attempts

weren’t going to be fast enough, so I decided to parallelize the process with

32 workers on an 8 core server. Previous projections showed that the serial

version of my data cleaner would’ve taken roughly 2 months to complete

with the Wikipedia articles dataset, but parallelizing the process got that

time to only 28 hours. Figure 1 shows the speedup results when parallelizing

the data cleaning process over several workers. Since there were 8 cores used

and each core had 4 processors, 32 showed to be the magic number for the

number of workers to parallelize. When using 64, performance significantly

decreased. This shows that the speed of the cleaning process depends heav-

ily on the number of processors available for computation, since this is a

very CPU-intensive task. Clearly 28 hours is nowhere near real-time data

cleaning, but with more workers in a distributed system, this could quickly

converge into a more real-time process, since individual documents are in-

dependent of each other and can be split up into a map-reduce operation in

a cluster with ease.

In the end, with the Wikipedia dataset, my data cleaner processed

4,368,441 documents, yielding 869,461,874 lemmatized nouns, with 7,560,052

44

Figure 7.2: F+LDA vs CGS, Log Likelihood Convergence Time

unique words. This method of data cleaning reduced each document to

about 25% of its original size. The resources for performing LDA at this

scale were not available at the time of this thesis, so I chose to work on

subsets of the data for my experiments. I chose to use only the 100,000

most frequent words in the dataset, then stripped down the dataset to only

include those words that were in the top 100,000. Even though this made

the dataset more reasonable for LDA, stripping out low-frequency/high cost

words, the dataset was still too large for the resources available. For this

reason, I chose to do experiments with the data in chunks rather than use

the entire dataset.

7.2 Sampler Comparison

7.2.1 F+LDA vs CGS

One of the biggest revelations in this process was to figure out how much

better F+LDA was than CGS at sampling when scaling document size and

45

Figure 7.3: F+LDA vs CGS, Log Likelihood Comparison on Sparse Data

Figure 7.4: F+LDA vs CGS, Log Likelihood Comparison on Longer Corpus

number of topics - in terms of log likelihood convergence, stationary log

likelihood, and clock time to converge. Figures 7.2, 7.3, and 7.4 show the

results. F+LDA is faster than CGS with longer documents and larger K

because of the modified Fenwick Tree used to speed up sampling, as well as

maintaining the distribution for each word to sample. Because the document

portion of the probability distribution is stored in a tree, sample generation

takes place in O(log(K)) time, where K is the number of topics. CGS

also uses a binary search variant to sample from the proposal distribution,

46

Figure 7.5: F+LDA vs CGS Inference Method, Wikipedia Articles (average
110 words per document)

Figure 7.6: F+LDA vs CGS Inference Method, Tweets (average 10 words
per document)

so it also samples in O(log(K)) time, but F+LDA only needs O(log(K))

for updates to the proposal distribution as well, whereas CGS needs O(K)

to rebuild the proposal distribution for each word in the corpus. This is

because CGS has to reload an entire array with probability values for the

next token, whereas the Fenwick Tree only needs to update every time the

topic assignment changes for a word and when starting sampling on a new

document. CGS needs to update the distribution array with every word

iteration. Although the uniform sample doesn’t always fall in the document-

47

portion of the proposal distribution (see the section on 2-level sampling for

F+LDA), F+LDA samples more often from this distribution with shorter

documents and larger K, and thus can save a lot of time for the overall

LDA inference process. With longer documents, the sampling done for z
new

is sampled from the F+ Tree up to 18x more frequently than with shorter

documents. As Figure 7.2 shows, F+LDA far outpaces CGS with larger K

as well. Figure 7.3 shows that F+LDA converges to a better log likelihood

with a highly sparse dataset. With the dataset used for figure 7.3, the corpus

is intentionally highly sparse by comparison. I took only 5 documents from

the entire Wikipedia corpus, with each document being fairly di↵erent from

the others. This ensured sparsity, and intuitively would mean that topic

distribution would be much more sparse, since the individual articles are

so di↵erent from each other. Figure 7.4 shows that CGS and F+LDA have

fairly similar log likelihood values when the corpus is more dense, although

F+LDA is still slightly better. This illustrates that F+LDA excels with

more sparse data, whereas the results are much more similar with more

dense data. Figure 7.5 shows the inference speed comparison with a specific

dataset - 10,000 Wikipedia articles. Since the articles are longer, F+LDA is

about 12% faster than CGS. In Figure 7.6, it’s easy to tell that CGS performs

much better on very short documents - in this case, a corpus of 10,000 tweets.

This is because F+LDA still has some overhead when building the tree and

rebuilding it with every document, so the overall runtime is much slower

with F+LDA.

48

Figure 7.7: Speedup from 1 worker when using Nomadic Token Passing
architecture

7.3 Distributed Architecture results

7.3.1 Nomadic Token Passing

Although exceptionally parallel in theory, there are many challenges with

parallelizing with the nomadic token passing architecture. Python as a lan-

guage is incredibly fast to implement, but much slower when running. Al-

though certain critical parts can be written in C via a Cython wrapper, there

are some parts that need to stay in pure Python (such as the dispatcher and

workers), and those tend to slow down the entire system process. Although

the samplers used for the distributed system were written in Cython and

were thus very fast, they made it so the load on the system was some-

thing that couldn’t be optimized past a certain point, and the entire system

su↵ered, in terms of runtime complexity. Figure 7.7 shows that there is

significant linear speedup when moving from 1 worker to 2 workers, but af-

ter that, the speedup levels o↵ at around 2x, no matter how many workers

are introduced. There are several reasons this happened, and they are now

49

Figure 7.8: Memory consumption trend per worker, Nomadic Token Passing
architecture

discussed.

7.3.2 Token Passing Delay

Because the nomadic token passing architecture has so much data in flux

between workers and the dispatcher, and because the samplers are so much

faster than the rest of the pure-Python architecture, the runtime complexity

of the entire system is dominated by what happens with the tokens while

they are being transferred from one worker to another, and especially when

maintaining state of the overall system. Both with using a central dispatcher

to maintain global state as well as decentralizing the global state amongst

workers, the data is the same - the underlying language to be used is the

underlying bottleneck of the system. One solution would be to rewrite the

samplers in pure python to show more of a speedup in the overall system

when more workers are added, but that would make the system even slower,

and only serve to show that the architecture works, which has already been

50

proven in [4]. The goal of using token passing was to parallelize the entire

system asynchronously and without locking, but I failed to realize how much

the choice of language would a↵ect the overall running time of the system.

Python is slower because there are no static types and there is a global

interpreter lock (GIL) that make Python great for building prototypes and

for making single-threaded applications, but when the Python interpreter

needs to infer type checking in a distributed architecture where milliseconds

matter, that adds significant lag to the overall system when run at scale.

7.3.3 Nomadic token passing - Excellent for memory con-

sumption in distributed systems

One advantage that I consistently found with the nomadic token passing

architecture was that the memory consumption was very minimal, and the

amount of memory needed at each worker is O(K + d
w

), where K is the

number of topics and d
w

is the number of documents assigned to each worker

d. The good news is, the memory gets even better for each worker as more

workers are added, since each worker only takes a chunk of the entire corpus

|d
w

| = D

W

, where D is the total number of documents and W is the total

number of workers. Figure 7.8 shows that memory consumption decreases

linearly with the number of workers added.

51

Chapter 8

Future Work

8.1 Porting to a faster language

For the future, this project needs to be ported from Python/Cython to

C++, or at least Java, in order to circumvent the slowness of Python. This

would improve the network lag experienced in this implementation, and it’d

be easier to see how much faster the system would perform with the addition

of more workers.

8.2 Online sampling

A major improvement to this system would be to enable online sampling,

or to transition to variational bayes for easier online inference. This would

be very helpful in situations where data is streaming into a system, and

the model needs to be built based on continuous data rather than ad hoc

requests.

52

8.3 Topic modeling as a service

To make this system industrial strength, this should be made into topic

modeling as a service. Right now, the workers and dispatcher cease once the

algorithm completes, since this is primarily a system to observe tradeo↵s

in di↵erent datasets when considering LDA inference. An improved version

of this would perform well under any kind of dataset like in [1], and be

able to produce meaningful � and ✓ by writing them to disk or providing

them as downloadable bytes, perhaps as a flat file, or even storing them in

a database. Ideally, this would be some kind of RESTful API, or for more

speed and security, RPC connections could be used.

8.4 Flexibility

One of the other drawbacks of the F+NOMAD architecture being imple-

mented in Python, using Pyro python remote objects, is that outside sys-

tems can’t directly connect to the LDA inference system unless they are also

written in Python. Changing the communication framework to something

RPC based, like gRPC, makes the system flexible enough to accept commu-

nication from any other program that can use the same RPC framework.

This is ideal when connecting with HDFS, for example, and as a component

in Spark, since gRPC can talk to programs written in Java as well.

53

Chapter 9

Conclusions

In this paper, I examined the inference process for LDA using MCMC sam-

pling, and explored some methods used to optimize for sparse datasets vs

denser datasets. F+LDA is better for sampling more sparse datasets, longer

documents and when K is large, due to its O(logN) modified Fenwick tree

sampler, as well as being able to update the proposal distribution in O(logN)

time. Collapsed Gibbs Sampling is better for more dense datasets, since the

frequency in sampling from C
d

and C
w

centric distributions is roughly the

same.

I also reviewed the F+NOMAD distributed architecture for LDA in-

ference, using token passing combined with F+LDA sampling. There are

performance considerations to keep in mind when choosing a language in

which to implement the architecture, and the choice of language largely

determines the speed of the overall system.

Future work aims to optimize this parallelized architecture by porting

it to a faster, compiled language like C++, and making the system flexible

54

enough to act as a service, rather than being geared towards individual ad

hoc tasks.

55

Bibliography

[1] L. Yu, C. Zhang, Y. Shao, and B. Cui. LDA*: A Robust and Large-Scale

Topic Modeling System.

[2] N. Ebrahimi and F. Li. Research Interest Detection From Grad Admis-

sion Database: Text Classification at Scale.

[3] J. Chen, K. Li, J. Zhu, and W. Chen. WarpLDA: a Cache E�cient O(1)

Algorithm for Latent Dirichlet Allocation.

[4] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I.S.Dhillon. A scal-

able asynchronous distributed algorithm for topic modeling. In WWW,

pages 1340-1350. ACM, 2015.

[5] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E.P. Xing, T.-Y. Liu,

and W.-Y. Ma. Lightlda: Big topic models on modest computer clusters.

In WWW, pages 1351-1361. ACM, 2015.

[6] A. J. Smola and S. Narayanamurthy. An architecture for parallel topic

models. In Proceedings of the VLDB, 2010.

56

[7] A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola. Reducing the sampling

complexity of topic models. In SIGKDD, pages 891-900. ACM, 2014.

[8] Y. Gao, J. Chen, and J. Zhu. Streaming Gibbs Sampling for LDA Model

[9] Gibbs Sampling, Wikipedia https://en.wikipedia.org/wiki/Gibbs_

sampling

[10] Radim Řeh̊uřek and Petr Sojka Software Framework for Topic Mod-

elling with Large Corpora. In Proceedings of the LREC 2010 Workshop

on New Challenges for NLP Frameworks, pages 45-50. ELRA, 2010

[11] Topic modeling with Latent Dirichlet allocation using Gibbs sampling

https://github.com/lda-project/lda

[12] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of

Machine Learning Research, 3:993-1022, January 2003.

[13] T. Hofmann Probabilistic Latent Semantic Analysis. In Proceedings of

the Fifteenth Conference on Uncertainty in Artificial Intelligence. Pages

289-296, August 01, 1999.

[14] Stemming and Lemmatization Stanford University

https://nlp.stanford.edu/IR-book/html/htmledition/

stemming-and-lemmatization-1.html

[15] spaCy: Industrial-Strength Natural Language Processing

https://spacy.io/

[16] textacy: Higher-level NLP built on spaCy

https://github.com/chartbeat-labs/textacy

57

https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Gibbs_sampling
https://github.com/lda-project/lda
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://spacy.io/
https://github.com/chartbeat-labs/textacy

[17] Littlejohn Shinder, Debra (2001). Computer Networking Essentials.

Cisco Press. p. 123. ISBN 978-1587130380. Retrieved 31 July 2017.

[18] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. S. Dhillon.

Nomad: Non-locking, stochastic multi-machine algorithm for asyn-

chronous and decentralized matrix completion. CoRR, abs/1312.0193,

2013.

58

	Introduction
	Background
	What is Topic Modeling?
	What is Latent Dirichlet Allocation?
	Using LDA to generate documents
	Why LDA?

	LDA Inference
	Markov Chain Monte Carlo Sampling
	Primer on Markov Chains
	Primer on Monte Carlo methods
	Markov Chain Monte Carlo methods - Putting it in context

	Related Work
	Challenges
	Runtime complexity
	Synchronizing globally shared Cw (and Ck)
	Language of implementation
	Memory consumption
	Random memory access and cache misses
	Network load
	Token passing - correct worker likelihood
	Contribution 1: Nomadic Token Passing Map

	Methods
	Data Cleaning
	Lemmatization
	Part of Speech Tagging
	Stop words
	Tf-Idf
	Miscellaneous Cleaning

	Data Conversion
	Contribution 2: Data Structure for LDA Processing

	Markov Chain Monte Carlo Sampling
	Collapsed Gibbs Sampling (CGS)
	F+LDA
	Modified Fenwick (F+) Tree
	Sampling with F+LDA

	Distributed Architecture
	Load Balancing
	Contribution 3: Load balancing in a token passing architecture

	Results
	Data Cleaning
	The Process, a Lesson in Parallelization

	Sampler Comparison
	F+LDA vs CGS

	Distributed Architecture results
	Nomadic Token Passing
	Token Passing Delay
	Nomadic token passing - Excellent for memory consumption in distributed systems

	Future Work
	Porting to a faster language
	Online sampling
	Topic modeling as a service
	Flexibility

	Conclusions

